Evolution of Mammalian X-linked and Autosomal Pgk and Pdh Ela Subunit Genes

نویسندگان

  • Jamie Fitzgerald
  • Ingrid B. Jakobsen
چکیده

The phylogeny and substitution rates of the mammalian X chromosome-located and autosomal phosphoglycerate kinase and pyruvate dehydrogenase genes were investigated. Compatibility analysis was used to show reticulate evolution in these genes. Analysis of the marsupial, mouse, and human phosphoglycerate kinase genes suggests that at least two recombination events have taken place, one occurring about the time of the placental-marsupial split involving exons l-5 and the other before the primate-rodent split involving exons 9-10. Similar analysis of the pyruvate dehydrogenase genes indicates a recombination event involving exons 2-3 at a time before the primaterodent split and a gene conversion between exons 3-4 in the human somatic and testis-specific pyruvate dehydrogenase genes after the primate-rodent split. This demonstrates that genetic exchange can occur between paralogous genes at widely separated chromosomal locations. Estimation of nucleotide substitution rates in these genes confirmed a higher substitution rate in the pyruvate dehydrogenase genes. In the phosphoglycerate kinase genes, there is no difference between the substitution rates in mice and humans and between the X chromosomeand autosomelocated genes. A greater substitution rate was noted in compared with the other mouse and human genes. This relaxation of functional constraint at this specific gene. the mouse autosomal pyruvate dehydrogenase gene when may be a result of either directional natural selection or a

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sex-linked mammalian sperm proteins evolve faster than autosomal ones.

X-linked genes can evolve slower or faster depending on whether most recessive, or at least partially recessive alleles are deleterious or beneficial due to their hemizygous expression in males. Molecular studies of X chromosome divergence have provided conflicting evidence for both a higher and lower rate of nucleotide substitution at both synonymous and nonsynonymous sites, depending on the n...

متن کامل

Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes an...

متن کامل

O-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals

Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...

متن کامل

Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates

Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-...

متن کامل

Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998